Deep prediction of investor interest: A supervised clustering approach
نویسندگان
چکیده
منابع مشابه
Deep Transductive Semi-supervised Maximum Margin Clustering
Semi-supervised clustering is an very important topic in machine learning and computer vision. The key challenge of this problem is how to learn a metric, such that the instances sharing the same label are more likely close to each other on the embedded space. However, little attention has been paid to learn better representations when the data lie on non-linear manifold. Fortunately, deep lear...
متن کاملA Variational Approach to Semi-Supervised Clustering
We present a variational inference scheme for semi-supervised clustering in which data is supplemented with side information in the form of common labels. There is no mutual exclusion of classes assumption and samples are represented as a combinatorial mixture over multiple clusters. The method has other advantages such as the ability to find the most probable number of soft clusters in the dat...
متن کاملUser-Interest-Based Document Filtering via Semi-supervised Clustering
This paper studies the task of user-interest-based document filtering, where users target to find some documents of a specific topic among a large document collection. This is usually done by a text categorization process, which divides all the documents into two categorizes: one containing all the desired documents (called positive documents) and the other containing all the other documents (c...
متن کاملInterest and Inflation Risk: Investor Behavior
We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the...
متن کاملDiscovering Areas of Interest Using a Semantic Geo-Clustering Approach
Living in the era of social networking, coupled together with great advances in digital multimedia user-generated content, motivated us to focus our research work on humanistic data generated by such activities towards new, more efficient ways of extracting semantically meaningful information in the process. More specifically, the herein proposed approach aims to extract areas of interest in ur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmic Finance
سال: 2021
ISSN: 2158-5571,2157-6203
DOI: 10.3233/af-200296